
ARTICLE OPEN

Genetically-informed prediction of short-term Parkinson’s
disease progression
Hossein J. Sadaei1,2, Aldo Cordova-Palomera3, Jonghun Lee4, Jaya Padmanabhan 4, Shang-Fu Chen1,2, Nathan E. Wineinger1,2,
Raquel Dias1, Daria Prilutsky4, Sandor Szalma 3 and Ali Torkamani1,2✉

Parkinson’s disease (PD) treatments modify disease symptoms but have not been shown to slow progression, characterized by
gradual and varied motor and non-motor changes overtime. Variation in PD progression hampers clinical research, resulting in long
and expensive clinical trials prone to failure. Development of models for short-term PD progression prediction could be useful for
shortening the time required to detect disease-modifying drug effects in clinical studies. PD progressors were dened by an
increase in MDS-UPDRS scores at 12-, 24-, and 36-months post-baseline. Using only baseline features, PD progression was
separately predicted across all timepoints and MDS-UPDRS subparts in independent, optimized, XGBoost models. These predictions
plus baseline features were combined into a meta-predictor for 12-month MDS UPDRS Total progression. Data from the Parkinson’s
Progression Markers Initiative (PPMI) were used for training with independent testing on the Parkinson’s Disease Biomarkers
Program (PDBP) cohort. 12-month PD total progression was predicted with an F-measure 0.77, ROC AUC of 0.77, and PR AUC of 0.76
when tested on a hold-out PPMI set. When tested on PDBP we achieve a F-measure 0.75, ROC AUC of 0.74, and PR AUC of 0.73.
Exclusion of genetic predictors led to the greatest loss in predictive accuracy; ROC AUC of 0.66, PR AUC of 0.66–0.68 for both PPMI
and PDBP testing. Short-term PD progression can be predicted with a combination of survey-based, neuroimaging, physician
examination, and genetic predictors. Dissection of the interplay between genetic risk, motor symptoms, non-motor symptoms, and
longer-term expected rates of progression enable generalizable predictions.
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INTRODUCTION
Parkinson’s disease (PD) is a slowly progressing neurodegenera-
tive disorder classically characterized by the loss of dopaminergic
neurons in the substantia nigra with resultant bradykinesia with
resting tremor or rigidity1,2. Available treatments primarily act to
restore dopamine levels (e.g., levodopa, COMT inhibitors, MAO-B
inhibitors), stimulate dopaminergic neurons (e.g., dopamine
agonists), or modify the symptoms of PD (e.g., anticholinergics,
amantadine, deep brain stimulation). These treatments have not
been shown to slow disease progression, which is characterized
by varied motor and non-motor changes overtime3.

Recently, there has been interest in dening disease trajectories
or subtypes in order to better diagnose, prognose, and treat
PD2,4–7. While there are no formally recognized disease subtypes,
data-driven methods are converging on disease states or subtypes
characterized by differing severity and progression rate of motor
symptoms and non-motor symptoms2,4,5,7,8. One approach to
subtyping nds: (1) a slowly progressing, earlier onset, mild motor
predominant disease subtype, (2) a rapidly progressing subtype
with severe motor symptoms, cognitive impairment, and sleep
disturbances, and (3) an intermediate subtype with no cognitive
impairment but both moderate motor and non-motor symp-
toms2,4,5. A prodromal phase presumably precedes these subtypes
with sleep disorder, urinary dysfunction, and other non-motor
symptoms, though it has been recently suggested that the
prodromal phase is also characterized by subtypes distinguished
by motor, non-motor, and genetic subtypes9. Ultimately, whether
these subtypes/states represent a single disease spectrum or
distinct disease entities is unknown10, but it is clear that PD

progression is variable with some recurrent patterns in motor and
non-motor progression trajectories.

This heterogenous nature of PD hampers clinical research, with
numerous agents failing to show neuroprotection through the
slowing or modication of disease progression11,12. The possible
underlying reasons for these failures are numerous and unclear,
but thought to include issues with traditional clinical trial design,
like too short a follow-up period in cohorts with disease that is too
advanced for effective intervention10. These issues result in
expensive and time-consuming clinical trials prone to failure with
long timespans separating trial initiation and resultant learnings.
Adaptable trials allowing for rapid iteration, learning, and failure
may accelerate clinical research and development, but their
implementation is challenged by slow disease progression with-
out reliable and rapid readouts10,13. Here we attempt to identify
short term PD progressors, with the goal of shortening the
duration of clinical trials by selectively recruiting subjects who
are destined to be short-term progressors. When progressors are
enrolled, one can expect the experimental and control groups to
diverge faster if the neuroprotective agent being tested is
effective. The primary outcome in these clinical trials is progres-
sion of the MDS-UPDRS Total score.

In this light, we develop machine learning models, trained on
the Parkinson’s Progression Markers Initiative (PPMI) cohort, and
externally validated on the Parkinson’s Disease Biomarkers
Program (PDBP) cohort. Our approach focuses on the prediction
of short-term (12-month) PD progression using only baseline
features collected at the time of study enrollment. Given the lack
of specic markers for neuroprotection, clinical outcome measures
are often used as trial outcomes, namely the Movement Disorder
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Society-sponsored Revision of the Unied Parkinson’s Disease
Rating Scale (MDS-UPDRS). Thus, here we predict progression in
MDS-UPDRS Total values, or the combined change of motor and
non-motor impairment over time.

Most previous efforts to apply machine learning to PD and
other neurodegenerative diseases have been focused on early
detection and disease monitoring applications, especially for the
differentiation of related disorders14. Several studies have
attempted PD progression prediction, but very often focus on
progression of a single motor (often MDS-UPDRS III) or non-motor
(often cognitive decline) factor15–20, which can be useful for
clinical management. For example, a previous study from The
Parkinson’s Progression Markers Initiative found that lower
baseline motor impairment as ascertained by physician-exam
(MDS-UPDRS III), lower striatal DAT binding, and lower CSF
amyloid-β1–42 were predictive of disease progression, especially
motor progression15. Subtyping-based studies are more compre-
hensive in integrating and projecting motor and non-motor
impairment but tend to focus on long-term clinical trajectories
and outcomes. For example, Severson et al. dene disease states
capable of handling PD heterogeneity through comprehensive
modeling, but not including genetic data. They derive disease
states predictive of long-term (3–5 year) progression to severe
disease7. Two other prior studies, discussed below, are most
relevant to our work, focusing on either short-term progression or
incorporating genetic predictors18,21.

Nguyen et al. use a combination of demographic, clinical, and
neuroimaging features to predict short-term MDS-UPDRS Total
disease severity in ElasticNet regression, Support Vector Machine,
Random Forest, and Gradient Boosted decision tree frameworks,
with a focus on dissecting the relation of neuroimaging markers
with disease severity. Note that this study focuses on predicting
future absolute disease severity, in contrast to our focus on
change over time. In this scenario and in contrast to progression
predictions described above, higher baseline impairment is
predictive of future severe disease. They achieve good predictive
1-year accuracy (PPMI AUC 0.75) but with reduced generalizability
in the external validation set (PDBP 0.69) except when identifying
those individuals with the most severe disease21.

More relevant from a genetics perspective, Latourelle et al.
focused on prediction of longer-term (3-years or longer) progres-
sion of motor impairment (combined MDS-UPDRS II and III)
trajectories using a combination of demographic, clinical, genetic,
and neuroimaging features18. They demonstrate the importance
of genetic predictors, but also observe a loss in generalizability in
the external validation dataset (R2 of 27% reduced to 9% overall),
with most of the separation of slow and fast progressors observed
at longer (4+ years) of follow-up. Their unbiased use of genome-
wide individual genetic markers, while handled with appropriate
care, is prone to overtting due to population stratication.

Thus, our analysis is differentiated by the short time span of
combined motor and non-motor (MDS-UPDRS Total) progression
trajectories studied, the combination of predictive features
employed including the use of multiple polygenic risk scores
(Parkinson’s disease diagnosis22 and educational attainment23),
and the multivariate, meta-predictive framework employed to
achieve generalizable prediction of comprehensive PD progres-
sion. We demonstrate that our approach can (1) capture the
heterogeneity of short-term progression trajectories that are likely
hindering generalizability of more direct predictive strategies, (2)
identify polygenic risk24 as important contributors to generalizable
prediction, and (3) disentangle and characterize the conicting
baseline conditions (potentially subtypes) driving heterogenous
disease progression. We suggest these models may be useful for
planning adaptive trials without excluding disease subtypes in
early trial phases.

METHODS
Data
Data from the Parkinson’s Progression Markers Initiative (PPMI)
and Parkinson’s Disease Biomarkers Program (PDBP) cohorts were
accessed from the Accelerating Medicines Partnership: Parkinson’s
Disease (AMP-PD) repository v1 release25. Data were accessed
under AMP-PD Data Use Agreement and downloaded from
https://amp-pd.org/. Data was collected prior to this study and
accessed de-identied. Participants provided written informed
consent for data sharing to the original PPMI and PDBP studies,
under protocols approved by the Indiana University IRB (PPMI)
and each PDBP center.

Individuals were included in this study if they had a diagnosis of
“Parkinson’s Disease” or “Idiopathic Parkinson’s Disease” at baseline.
In order to maximize the real-world utility in new prospective
cohorts, all standardization and correction factors that are described
below are dened in the PPMI training cohort and applied to both
the PPMI training and PDBP testing cohorts.

Denition of progressors vs non-progressors
MDS-UPDRS subpart values were rst adjusted for medication
treatment status by determining the average difference in MDS-
UPDRS subpart values for treated vs untreated PPMI individuals
across all timepoints and adding this average difference to the
respective MDS-UPDRS subpart values of treated individuals. Due
to the high level missingness for time-point specic treatment
data, we considered an individual treated if they were treated at
any point during the predicted follow-up period. The adjustment
for medication to all MDS-UPDRS scores for treated individuals
was: +0.67, +1.5, and +3.67 for MDS-UPDRS I, II, and III
respectively. For this and all subsequent analyses, medication
adjusted values are used. Given that we used a mixture of MDS-
UPDRS responses on and off medication, we conrmed there was
no association between levodopa, dopamine agonists, or other PD
medication usage status and MDS-UPDRS subpart (Supplemental
Table 1) or Total (Table 1) progression status in both PPMI and
PDBP. Progressors vs non-progressors were dened based on the
slope of their medication-adjusted MDS-UPDRS subpart values for
each time period—from baseline to 12-, 24-, and 36-months post
baseline and for each MDS-UPDRS subpart individually. Progres-
sors are dened as those individuals with a slope greater than
zero, non-progressors are dened as those individuals with an
slope less than or equal to zero. MDS-UPDRS Total is dened as
the sum of these subpart values, as normal, and progressors
dened similarly by the slope of the MDS-UPDRS Total value.
Ultimately, each individual is separately classied as a progressor
or non-progressor across all time intervals (12- 24- and 36-months
post baseline) and for each MDS-UPDRS subpart (I, II, and III),
resulting in nine different progressor vs non-progressor classica-
tions per individual.

Note that the above denition is equivalent to simply dening
progressors as those individuals with an increase in their
unadjusted MDS-UPDRS values over the given time interval.
Medication adjustment does not change these classications as it
is applied uniformly across all timepoints. However, we used these
slope values, as well as MDS-UPDRS subpart slopes calculated over
internal time intervals (e.g., 12 to 24 months), in a number of
exploratory agglomerative clustering analyses, which also
included absolute baseline MDS-UPDRS values, in order to
determine whether data driven approaches interrogating the
shape of the progression trajectory may be used to better dene
progressors vs non-progressors (data not shown). Ultimately, it
was determined that clustering-based approaches largely agreed
with the simpler denition, with more bias observed in the
baseline ages of progressors vs non-progressors when dened by
clustering vs simple MDS-UPDRS score changes. Therefore, we
proceeded with this straightforward denition of PD progression.
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Denition of predictors
We considered all available demographic, genetic, survey instrument,
clinical status, clinical examination, and neuroimaging data as
potential predictive features. Initially, predictive features were
eliminated if they had >50% missingness. Otherwise, missing values
were imputed simply using item averages for continuous predictors,
median values for ordinal predictors, and the most common value
for categorical predictors. After feature selection, the remaining
selected features had <5% missingness prior to imputation with an
overall average level of missingness being <1%. Features were
ranked for predictive importance using Shapley Additive Explana-
tions (SHAP) values26 using the initial modeling approach described
in Predictive Model Development below. The top 25 predictive features
were used in nal modeling. Predictive features included: (1) baseline
age, gender, and education status, (2) baseline MDS-UPDRS I, II, and
III subpart and Total values as well as the responses to individual
subpart elements, (3) Montreal Cognitive Assessment (MoCA)
subscores and total score as well as the responses to individual
score elements, (4) Modied Schwab and England Percent Activities
of Daily Living (SE-ADL), 5) Dopamine Transporter Scan (DaTScan)
striatum binding ratios (left and right caudate and putamen ratios),
(6) Hoehn and Yahr Scale, and 7) genetic predictors which included; a
90-SNP polygenic risk score for Parkinson’s disease diagnosis22, a
763-SNP polygenic score for educational attainment23, and mono-
genic mutation status for GBA, LRRK2, and SNCA as cataloged in AMP-
PD and collapsed into a single binary variable per gene and as a
single combined variable. Predictive features are mean-standardized
using factors derived only from the training dataset and applied to

the testing dataset. We use a standard scaler for this purpose,
subtracting the mean and scaling to unit variance.

The Epworth Sleepiness scale was found to contribute minimal
additional predictive power and in conjunction with MDS-UPDRS
subpart components and excluded from use. DaTScan imagining
values were only present in PPMI and thus only present in train-
test split models of PPMI. Also note that whether responses were
provided by the patient or caregiver are encoded in the “info
source” feature in AMP-PD, but ultimately not selected as an
important feature. Summary comparisons of these predictive
features and their comparison in progressors vs non-progressors
are presented in Table 1 with the full set of MDS-UPDRS and MoCA
elements presented in Supplemental Table 2 (PPMI) and Supple-
mental Table 3 (PDBP). All feature comparisons are made using
the nonparametric Wilcoxon Rank Sum Test. All features are
labeled corresponding to the AMP-PD research data dictionary
“data element” column.

Polygenic score calculation
Polygenic scores were calculated using whole genome sequencing
data processed and quality-controlled by the AMP-PD consortium25.
Individuals of European ancestry were selected as those individuals
with genetic principal component values within seven standard
deviations of the average for the rst six principal components of
European 1000 Genomes Phase 3 reference panel individuals27.
Principal components were calculated using variants with a call
rate>95%, Hardy–Weinberg equilibrium p-value > 1e−15, and
minor allele frequency >1%. These variants were pruned using a

Table 1. Baseline characteristics of 12-month MDS-UPDRS total progressors vs non-progressors.

Predictive feature Progressors: Non-progressors (PPMI) P-value Progressors: Non-progressors (PDBP) P-value

Demographics 64%: 36% - 48%:52% -

Sample size (n) 529 - 350 -

Age (years) 61.9 ± 0.5: 62.1 ± 0.61 0.033 59.4 ± 1.15: 60.0 ± 1.01 0.034

Sex (%F) 24%: 22% - 60%: 73% -

Treatment status (%)

Levodopa 14% ± 0.02: 19% ± 0.03 0.312 75% ± 0.03: 76% ± 0.03 0.856

Dopamine agonist 10% ± 0.02: 13% ± 0.02 0.563 55% ± 0.04: 50% ± 0.04 0.434

Other PD medication 14% ± 0.02: 18% ± 0.03 0.479 74% ± 0.03: 74% ± 0.03 0.932

Clinical instruments

MDS-UPDRS I 4.1 ± 0.26: 4.6 ± 0.36 0.204 4.1 ± 0.39: 4.6 ± 0.43 0.566

MDS-UPDRS II 3.5 ± 0.25: 4.2 ± 0.34 0.043 4.7 ± 0.5: 5.6 ± 0.56 0.355

MDS-UPDRS III 15.9 ± 0.53: 21.0 ± 0.73 <0.001 19.1 ± 0.94: 24.4 ± 1.05 <0.001

MDS-UPDRS Total 23.6 ± 0.8: 29.9 ± 1.07 <0.001 28.0 ± 1.51: 34.8 ± 1.71 0.002

Hoehn & Yahr 1.5 ± 0.03: 1.7 ± 0.04 <0.001 2.03 ± 0.04: 2.1 ± 0.05 0.415

SE-ADL 94.0 ± 0.42: 93.7 ± 0.52 0.478 88.5 ± 0.93: 87.4 ± 1.02 0.568

MoCA 27.1 ± 0.15: 27.2 ± 0.2 0.013 26.0 ± 0.24: 26.1 ± 0.25 0.628

ESS

DaTScan neuroimaging

sbr_caudate_r 2.1 ± 0.04: 2.0 ± 0.06 0.06 - -

sbr_caudate_l 2.1 ± 0.04: 2.0 ± 0.06 0.048 - -

sbr_putamen_r 0.9 ± 0.03: 0.9 ± 0.05 0.02 - -

sbr_putamen_l 0.9 ± 0.03: 0.9 ± 0.05 0.018 - -

Genetics

Parkinson’s disease PRS (ave) 0.004 ± 0.0: 0.005 ± 0.0 0.229 0.0026 ± 0.0: 0.0025 ± 0.0 0.534

Educational attainment PRS (ave) 0.0005 ± 0.0: 0.0004 ± 0.0 0.594 0.0005 ± 0.0: 0.0004 ± 0.0 0.091

Monogenic risk (%) 32%: 40% - 9%: 9% -

Features consistently different between progressors and non-progressors in both PPMI and PDBP are bolded. See Supplemental Tables 2–3 for a more detailed
comparison. All comparisons are made with the non-parametric Wilcoxon rank sums test.
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window size 50, step 5, and r2 0.2 in PLINK28. For the PD PRS, beta
estimates for 90 SNPs independently associated with PD in the
largest recent GWAS meta-analysis22 were used to calculate
individual level PRSs using the standard weighted allele-counting
approach29. Similarly, for educational attainment, beta estimates for
763 SNPs independently associated with educational attainment23

were used to calculate individual level PRSs using the standard
weighted allele-counting approach29.

Predictive model development
PPMI data was split into 75% training and 25% testing data for the
development of initial unoptimized models for the prediction of
MDS-UPDRS I, II, and III progression status at 12-months using
XGBoost30, a simple feed forward neural network (FFNN), balanced
random forest31 (BRF), and logistic regression (LR). A further split
of the PPMI training dataset into a 75% training and 25%
validation data subset was performed for feature selection by
SHAP values26. To calculate SHAP values an explainer model is
tuned on this internal training data subset to drive feature
selection and importance. After feature selection, fully trained
models are applied to the full PPMI dataset to generate nal
importance plots using the SHAP function of the sci-kit learn
library. Global summary plots are then generated using the
summary plot function in the SHAP library.

For initial models, XGBoost models were clearly superior,
achieving F1 scores of 0.70 for MDS-UPDRS I vs. 0.68, 0.55, and
0.54 for FFNN, BRF, and LR respectively, 0.78 for MDS-UPDRS II vs
0.63, 0.69, and 0.68 for FFNN, BRF, and LR respectively, and 0.77
for MDS-UPDRS III vs 0.70, 0.71, 0.69 for FFNN, BRF, and LR
respectively. Similar relative results were observed for 24- and
36-month prediction. We also attempted quantitative predic-
tions of progression rate but found that these predictions were
difcult and led to poorer performance overall. Therefore, we
limited additional model development to the binary classica-
tion problem in the XGBoost predictive framework.

Rened XGBoost models were then prepared for 12-, 24-, and
36-month prediction with Optuna hyperparameter optimization32

using the default random sampler. Tuning parameters and ranges
include: lambda_par= [1e,1–8], alpha= [1e,1–8], subsample= [0.5,
1], colsample_bytree= [0.5, 1], scale_pos_weight= [0.8, 1.2], max_-
depth= [6,36], min_child_weight= [1,10], eta= [1e,1–8] gamma=
[1e,1–8], grow_policy= [“grow_policy”, [“depthwise”, “lossguide”]],
sample_type= [“sample_type”, [“uniform”, “weighted”]], normal-
ize_type= [“normalize_type”, [“tree”, “forest”]], rate_drop= [1e,1–8]

skip_drop= [1e,1–8].
Only baseline features are used in these predictions, regardless

of the timespan to the outcome. Final models were built by
splitting PPMI into a 75% training and 25% validation set. The
training set is further split 75%:25% into a training and testing set
for feature selection. Thus, feature selection is evaluated on the
hold-out test set and validated on the validation set.After feature
selection, nal training is performed on the full PPMI dataset and
tested on the independent PDBP dataset. Stratied random
sampling was used when splitting the data to maintain the
balance of progressors vs non-progressors (see Table 1). Indepen-
dent testing is of greatest interest, though due to the lack of
DaTScan data in PDBP, DaTScan utility can only be evaluated in the
PPMI train-test split models. Performance of these initial models
are reported in Table 3.

Meta-prediction
The output predictions of initial models predicting individual
MDS-UPDRS sub-parts at 12-, 24-, and 36- months are subse-
quently used as features for nal meta-prediction. Individual
subpart model predictions across the different follow-up time
periods are input into an XGBoost meta-predictor, in conjunction

with the initial baseline features, for the nal meta-prediction of
12-month MDS-UPDRS Total progression status.

Model performance
Model performance is reported using F1 scores for initial models
with the addition of ROC AUC and PR AUC for nal meta-
prediction models. See Table 3 and Table 4 for condence
intervals on reported performance metrics.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

RESULTS
Characteristics of progressors vs non-progressors
The target prediction is short term PD progression status, dened as
those individuals with a positive slope in their MDS-UPDRS Total
value from baseline to 12-months post baseline. A comparison of
the demographic, clinical, neuroimaging, and genetic characteristics
of 12-month progressors vs non-progressors in both PPMI and PDBP
is provided in Table 1. Considering consistent trends observed in
both PPMI and PDBP, while some measures demonstrated marginal
differences between progressors and non-progressors, only the
baseline MDS-UPDRS III and Total scores were signicantly different
at baseline, with progressors displaying less baseline impairment
overall. This trend was also apparent, but not signicant, for MDS-
UPDRS I, MDS-UPDRS II, and the Hoehn & Yahr functional
impairment values. This observation also extends to individual
subpart components, with components of MDS-UPDRS III showing
the greatest differences in progressors vs non-progressors, again
with progressors consistently displaying less baseline impairment
(Supplemental Tables 2, 3).

Given the relatively weak relation of 12-month MDS-UPDRS I and II
progression status with 12-month MDS-UPDRS Total progression
status, we evaluated the overlap in subpart and total progression
status directly (Table 2). In general, MDS-UPDRS subpart progression
statuses overlapped moderately with one another (~60% overlap
between subparts). Progression in any individual subpart overlapped
more strongly with 12-month MDS-UPDRS Total progression, with
the larger MDS-UPDRS III component showing greatest overlap (87%)
with 12-month MDS-UPDRS Total progression. Thus, progression
across all MDS-UPDRS subparts contribute with varying degrees to
short term MDS-UPDRS Total progression, partially explained by their
unequal contributions to the total score but supporting the notion
that PD progression is characterized by heterogeneous progression
of motor and non-motor changes overtime.

This heterogeneity in short-term subpart progression status
additionally manifests as heterogeneity in longer term individual-
level progression trajectories. After 12-months post-baseline,

Table 2. Heterogeneity in 12-month MDS-UPDRS subpart
progression.

MDS-
UPDRS I

MDS-
UPDRS II

MDS-
UPDRS III

MDS-
UPDRS Total

MDS-UPDRS I 100% 58% 53% 62%

MDS-UPDRS II - 100% 61% 71%

MDS-UPDRS III - - 100% 87%

MDS-
UPDRS Total

- - - 100%

Overlap across MDS-UPDRS subparts and Total progression status, as
measured by Jaccard similarity. This matrix is symmetric thus lower
diagonal values are excluded.
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Fig. 1 MDS-UPDRS annualized trajectories. Annualized MDS-UPDRS subpart and total slopes for the PPMI cohort. Each value corresponds to
the slope of the line connecting the each MDS-UPDRS component value with its respective value preceding it by 12 months. For example, the
18-month timepoint is the slope of the difference between 6-month and 18-month MDS-UPDRS values. Individual trajectories are plotted on
the left, with average values provided on the right. Lines are color coded based upon their baseline to 12-month MDS-UPDRS Total
progression status (red: progressors, blue: non-progressors).
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initial progressors tend to slow or even reverse their trajectory
from 12 to 24 months, while initial non-progressors tend to
convert to slow progressors in the 12 to 24-month timeframe
(Fig. 1, right panels). From 24-months onward both groups
progress gradually across all subparts on average, with a slight
bias in increased motor progression (MDS-UPDRS II and III) for
initial 12-month progressors. MDS-UPDRS Total progression is
similar, but with initial 12-month progressors characterized by
increased overall progression rates in the long-run. Signicant

variability is apparent in individual level progression trajectories
(Fig. 1, left panels).

Direct prediction of PD progression
Given the heterogeneity observed in individual level trajectories,
and the inconsistency of MDS-UPDRS subpart progression
contributions to total progression, we reasoned that direct
12-month MDS-UPDRS Total progression may be difcult to
generalize. As suspected and observed in prior studies18,21,
developing models directly predicting 12-month MDS-UPDRS
Total progression performed with reduced generalizability when
trained on PPMI and tested on PDBP (12-month MDS-UPDRS Total
F-measure 0.74 on PPMI falling to 0.71 for PDBP). In contrast,
generalizability was observed for 12-month MDS-UPDRS subpart
progression predictions, and further improved accuracy and
generalizability was observed for longer term 24- and 36-month
progression prediction across MDS-UPDRS subparts and MDS-
UPDRS Total (Table 3, top). We theorized that longer term
progression predictions would be more robust relative to the
direct prediction of 12-month subpart progression. Before
describing how this nding is used to improve the generalizability
and accuracy of 12-month MDS-UPDRS Total progression predic-
tion, we characterize the features driving individual MDS-UPDRS
subpart progression predictions.

Shapley plots depicting the importance of features for
12-month MDS-UPDRS subpart progression predictions are pre-
sented in Fig. 2. Baseline MDS-UPDRS subpart measures were
universally important predictors of progression across all subparts.
A lower degree of baseline impairment for each MDS-UPDRS
subpart was predictive of its respective 12-month progression.
This relationship is reversed for baseline MDS-UPDRS subparts that
are not the target of 12-month progression prediction. For
example, a low baseline MDS-UPDRS I impairment, in conjunction
with a greater degree of MDS-UPDRS II and III baseline impairment
is predictive of future MDS-UPDRS I progression (Fig. 2A). This is
true for MDS-UPDRS II and III 12-month progression status as well
—lower baseline impairment of motor measures are predictive of
their respective 12-month progression status, while higher base-
line impairment of the non-target MDS-UPDRS I non-motor
measure is predictive of 12-month motor progression status
(Fig. 2B, C). In other words, progression for any individual MDS-
UPDRS subpart is, on average, characterized by a “catch-up” effect
in individuals with reduced baseline impairment of the target
MDS-UPDRS subpart and higher baseline impairment in the non-
target MDS-UPDRS subparts. These ndings also demonstrate that
the optimal conditions for short term progression of motor vs
non-motor symptoms conict with one another—i.e., the baseline
conditions for simultaneous “catch-up” effects across motor and
non-motor symptoms are in conict.

Table 3. Accuracy of direct and meta-prediction of MDS-UPDRS I, II, III,
and total progression.

PPMI train-test
split

PDBP independent
test

Direct prediction

12-month MDS-UPDRS I 0.70 ± 0.04 0.70 ± 0.05

12-month MDS-UPDRS II 0.69 ± 0.04 0.70 ± 0.05

12-month MDS-UPDRS III 0.74 ± 0.04 0.73 ± 0.05

12-month MDS-
UPDRS Total

0.74 ± 0.04 0.71 ± 0.05

24-month MDS-UPDRS I 0.70 ± 0.04 0.69 ± 0.05

24-month MDS-UPDRS II 0.73 ± 0.04 0.72 ± 0.05

24-month MDS-UPDRS III 0.76 ± 0.04 0.74 ± 0.05

24-month MDS-
UPDRS Total

0.75 ± 0.04 0.73 ± 0.05

36-month MDS-UPDRS I 0.76 ± 0.04 0.75 ± 0.05

36-month MDS-UPDRS II 0.72 ± 0.04 0.74 ± 0.05

36-month MDS-UPDRS III 0.74 ± 0.04 0.77 ± 0.04

36-month MDS-
UPDRS Total

0.67 ± 0.04 0.74 ± 0.05

Meta-prediction

12-month MDS-
UPDRS Total

0.77 ± 0.04 0.75 ± 0.05

24-month MDS-
UPDRS Total

0.76 ± 0.04 0.75 ± 0.05

36-month MDS-
UPDRS Total

0.77 ± 0.04 0.73 ± 0.05

F-measure accuracy of direct (single model) MDS-UPDRS I, II, III, and Total
progression prediction (top) and F-measure accuracy of MDS-UPDRS Total
meta-prediction (bottom). PPMI is used for training in all cases. Train-test
split is 75% training and 25% testing with stratied sampling. See Fig. 2 for
feature importance for MDS-UPDRS I, II, and III direct prediction and Fig. 3
for feature importance for MDS-UPDRS Total meta-prediction. ROC and PR
curves for meta-prediction are provided in Fig. 4.

Fig. 2 12-month MDS-UPDRS subpart and Total predictive feature importance. Shapley feature importance plots for 12-month MDS-UPDRS
I (A), II (B), and III (C) subpart progression prediction. Features are ranked for most to least important (top to bottom). Coloration depicts the
value for each feature (red = high values, purple = average values, blue = low values). The impact on prediction at the individual-level is
indicated by the points, where points to the right indicate increased importance for prediction of progressor status, and points to the left
indicate increased importance for the prediction of non-progressor status. See Fig. 3B for the Shapley plot for MDS-UPDRS Total progression
prediction.
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Genetic risk is also universally important—being the second
most important feature for self-reported MDS-UPDRS I and II
progression status, and most important feature for prediction of
the physician exam-based MDS-UPDRS III 12-month progression
status. While the link between PD polygenic risk and non-motor
progression appears complex (Fig. 2A), higher PD polygenic risk
is universally associated with 12-month motor (MDS-UPDRS II
and III) non-progression. This is also true for monogenic risk
status (Table 1) where monogenic risk is associated with non-
progression (or slower progression in the long-term), as
previously noted for LRRK233.

The polygenic educational attainment score follows as the next
most important predictor, however, the relationship with progres-
sion status is complex. A clearer signal becomes apparent in meta-
prediction of MDS-UPDRS Total progression, described later
(Fig. 3). Cognitive impairment (MoCA Delayed Recall and
Attention) is associated with lack of progression in self-reported
measures (MDS-UPDRS I and II) but is not relevant for physician
exam-based (MDS-UPDRS III) progression.

Meta-prediction of PD progression
Given the previously described generalizability and accuracy of
individual MDS-UPDRS subpart progression predictions, especially

over longer follow-up durations, we evaluated whether these
superior predictions could be combined to improve the general-
izability and accuracy of short term MDS-UPDRS Total progression
prediction. Indeed, meta-prediction of MDS-UPDRS Total progres-
sion was superior to direct MDS-UPDRS Total progression
prediction (Table 3). 12-month MDS-UPDRS Total progression
prediction on the independent PDBP testing set improved from a
F-measure 0.71 for direct prediction (Table 3, top) to a F-measure
of 0.75 with meta-prediction (Table 3, bottom). This meta-
prediction model achieves a ROC AUC 0.74 and PR AUC 0.73 in
the independent PDBP testing set (Fig. 4). Further improvements
in longer term MDS-UPDRS Total progression prediction were also
achieved (Table 3, top vs bottom).

Shapley plots depicting the feature importance for 12-month
MDS-UPDRS Total progression meta-prediction and direct predic-
tion are presented in Fig. 3A, B. Overall, the important predictive
features remain similar, with the most important feature for both
direct and meta-prediction being low baseline MDS-UPDRS III
impairment. Similarly, MDS-UPDRS II impairment remains impor-
tant in both direct and meta-prediction, but with the importance
of baseline MDS-UPDRS II impairment replaced with the prediction
of its progression at 36-months in meta-prediction. MDS-UPDRS I
impairment also remains important in both direct and meta-
prediction, but with the prediction of its progression at 24-months

Fig. 3 12-month MDS-UPDRS total meta-predictor feature importance. Shapley feature importance plots for direct (B) and meta-prediction
(A) of 12-month MDS-UPDRS Total progression prediction. Shapley plots for important meta-features for meta-prediction of 12-month MDS-
UPDRS Total progression status are shown in C 24-month MDS-UPDRS I prediction, and D 36-month MDS-UPDRS II prediction. Features are
ranked for most to least important (top to bottom). Coloration depicts the value for each feature (red = high values, purple = average values,
blue = low values). The impact on prediction at the individual-level is indicated by the points, where points to the right indicate increased
importance for the prediction of progressor status, and points to the left indicate increased importance for the prediction of non-progressor
status.
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being added in addition to its baseline state in meta-prediction
(Fig. 3A, B).

The two new meta-features, prediction of 24-month MDS-
UPDRS I progression and 36-month MDS-UPDRS II progression can
be observed to capture some opposing signals (Fig. 3C, D). For
example, baseline impairment of all MDS-UPDRS subparts have
opposing directions in these two meta-features. Similarly, age at
baseline and the PD polygenic risk score have opposing effects for
the positive prediction of progression. The combination of these
two meta-features effectively capture the primary conicting
baseline signals for short-term motor vs non-motor progression.

As a primary predictive feature, higher PD polygenic risk is
more clearly associated with non-progression in meta vs direct
12-month MDS-UPDRS Total prediction (Fig. 3A, B), being the 2nd
most important predictor in both cases. This is likely primarily due
to the association between higher PD polygenic risk and slower
motor progression, as can be observed in the right-shift of the PD
polygenic risk score distribution for MDS-UPDRS II, MDS-UPDRS III,
and MDS-UPDRS Total non-progressors relative to progressors
(Fig. 5, left). This shift is statistically signicant for MDS-UPDRS II
(p-value <0.001) and MDS-UPDRS III (p-value = 0.009), but not
MDS-UPDRS I (p-value = 0.41) or MDS-UPDRS Total (p-value =
0.23). Monogenic risk does not rank among the most important
features for short-term PD progression prediction.

Interestingly, a higher educational attainment polygenic score is
more clearly associated with progression status in the meta-
prediction framework relative to direct prediction (Fig. 3A, B). This
association is most apparent in the left-shift of the educational
attainment polygenic score for MDS-UPDRS III and MDS-UPDRS
Total non-progressors relative to progressors (Fig. 5, right). At the
population level, the effect of the PD and educational attainment
polygenic score distribution shifts are subtle and not signicant,
but overall the educational attainment polygenic score is the 4th
most important predictive features overall (Fig. 3A) as well as
being in the top 3 most important features in the meta-features
(Fig. 3C, D).

Sensitivity of predictions to feature removal
To further validate the relative importance of predictive features,
we removed genetic, neuroimaging, survey-based, and physician
exam-based predictive features and evaluated the impact on
12-moth MDS-UPDRS total meta-prediction accuracy (Fig. 4).
Removing genetic predictors led to the greatest loss in accuracy
both when tested on PDBP; ROC AUC 0.74 vs 0.66, PR AUC 0.73 vs
0.66, and when performing train-test splitting on PPMI; ROC AUC
0.77 vs 0.66, PR AUC 0.76 vs 0.68 (Table 4). Removing physician
exam-based predictive features (MDS-UPDRS III, Hoehn and Yahr
staging, and contributing components) led to the next greatest loss
in accuracy when tested on PDBP; ROC AUC 0.74 vs 0.69, PR AUC
0.73 vs 0.71, and when performing train-test splitting on PPMI; ROC
AUC 0.77 vs 0.67, PR AUC 0.76 vs 0.71. Removing survey-based
predictive features (MoCA, MDS-UPDRS I and II and contributing
components) led to the third-most greatest loss in accuracy when
tested on PDBP; ROC AUC 0.74 vs 0.72, PR AUC 0.73 vs 0.72, and
when performing train-test splitting on PPMI; ROC AUC 0.77 vs 0.72,
PR AUC 0.76 vs 0.72. And removing neuroimaging-based predictive
features (DaTScan) led to the least reduction in accuracy, only
testable when train-test splitting PPMI; ROC AUC 0.77 vs 0.73, PR
AUC 0.76 vs 0.73 (Table 4). Full confusion matrices from these
results are presented in Supplemental Table 4. Additional accuracy
metrics (sensitivity, specicity, positive predictive value, negative
predictive, and F1-score) are provided in Supplemental Table 5.

DISCUSSION
We demonstrate that short-term, generalizable, and comprehen-
sive predictions of PD progression are possible by using a meta-
predictive XGBoost framework. It is interesting that an out-of-the-
box implementation of XGBoost is not able to completely
overcome the heterogeneity of motor vs non-motor PD progres-
sion despite being an ensemble learning approach comprised of
many decision trees30. This is likely due to the dominance of
motor progression in MDS-UPDRS Total progression, both through
the outsized contribution of MDS-UPDRS III to the Total score and

Fig. 4 12-month MDS-UPDRS Total meta-predictive performance and feature class contributions. Performance of 12-month MD-UPDRS
Total progression meta-prediction as measured by area under (AUC) receiver operating characteristic (ROC; left) and Precision-Recall (PR; right)
curves. PPMI train-test split (top) and independent testing on PDBP (bottom) are presented. Curves are presented for full models (red), without
genetic features (blue), without physician examination (MDS-UPDRS III) (gray), without survey-based features (MoCA, MDS-UPDRS I and II)
(green), and without imaging features (magenta, PPMI only). See Table 4 for ROC AUC and PR AUC values.
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the high-level similarity of MDS-UPDRS II and III progression
features. Other tested statistical and machine learning models
demonstrate inferior performance on even the simpler MDS-
UPDRS subpart prediction tasks.

Like prior studies15,18,21,34, we nd that low baseline MDS-
UPDRS subpart impairment is among the most important
predictors of progression status, but unlike prior studies we
demonstrate how meta-prediction leads to more accurate and
generalizable predictions through both the projection of long-
term motor and non-motor impairment trajectories and the
disentanglement of the conicting baseline conditions leading to
motor vs non-motor progression. While all PD individuals
eventually progress at a similar rate at longer follow-up time
periods, the rate and order of short-term symptom progression
differs across individuals depending upon their baseline state,
leading to differing and more rapid “catch-up” effects in motor vs
non-motor symptoms. Thus, the superiority of meta-prediction is
potentially due to the capture of motor vs non-motor PD
progression subtypes, as well as aspects of the progression of
the prodromal phase given the high importance of sleep
disturbances in the meta-prediction framework. In addition, it
appears that short term PD progression predictions benet from
the inclusion of more robust predictions of longer-term progres-
sion. This point is supported by the fact that 24-month MDS-
UPDRS subpart I and 36-month MDS-UPDRS subpart II progression
predictions are ultimately selected in the meta-prediction frame-
work over the 12-month progression prediction alternatives
available during meta-prediction feature selection.

Fig. 5 Distribution of polygenic scores in relation to MDS-UPDRS subpart and total progression. Distribution of polygenic scores for
Parkinson’s disease diagnosis (left column) and Educational attainment (right column), by MDS-UPDRS subparts and Total progressors (red)
and non-progressors (blue). Distribution overlaps are colored purple. The Parkinson’s disease PRS has a right tail that is more prominent in
non-progressors, likely capturing a genetic subgroup of Parkinson’s disease due to high polygenic risk. The Educational attainment PRS is
normally distributed with a minor left shift in the distribution for motor non-progressors.

Table 4. Feature component accuracy of 12-month MDS-UPDRS total
meta-prediction.

PPMI train-test split PDBP independent test

ROC AUC PR AUC ROC AUC PR AUC

Full meta-prediction 077 ± 0.04 0.76 ± 0.04 0.74 ± 0.05 0.73 ± 0.05

No genetics 0.66 ± 0.04 0.68 ± 0.04 0.66 ± 0.05 0.66 ± 0.05

No physician exam 0.67 ± 0.04 0.71 ± 0.04 0.69 ± 0.05 0.71 ± 0.05

No surveys 0.72 ± 0.04 0.72 ± 0.04 0.72 ± 0.05 0.72 ± 0.05

No imaging 0.73 ± 0.04 0.73 ± 0.04 - -

ROC AUC and PR AUC 12-month values for 12-month MDS-UPDRS Total
progression prediction overall (full meta-prediction) and with feature class
removal. PPMI is used for training in all cases. Train-test split is 75% training
and 25% testing with stratied sampling. Note that removal of genetic
features results in the greatest decline in predictive accuracy. ROC and PR
curves for meta-prediction are provided in Fig. 4.

H.J. Sadaei et al.

9

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2022)   143 



We also uniquely demonstrate the importance of polygenic
scores24 for Parkinson’s disease diagnosis22 and educational
attainment23 for PD progression prediction. Genetic studies have
previously identied individual markers, especially for GBA and
APOE, in PD cognitive impairment progression, but markers for
motor progression have been elusive35–38. We demonstrate that
higher polygenic risk for PD is associated with short-term non-
progression, perhaps operating through the known relationship
between genetic risk and early-onset disease, and early-onset
disease with slower progression39,40. Though in PDBP, where age
of onset data is available, we observe no relationship between
the PD polygenic risk score and age of clinical diagnosis, though
age of clinical diagnosis may not capture the true time of
disease onset, which in itself may be a continuum. Similarly,
GWAS for age of PD onset appears to be overlapping with but
distinct from PD diagnosis41. More notably, a right tail in the PD
polygenic risk score distribution is apparent in both progressors
and non-progressors. This right tail is driven by rs34637584(a)
LRRK2 p.G2019S which has been previously associated with
slower disease progression33.

In contrast, a higher polygenic score for educational attainment
is associated with PD progression in meta-prediction, apparently
through MDS-UPDRS III progression though the overall relation-
ship with any individual subpart appears complex. Our rationale
for the inclusion of the educational attainment PRS was that it may
relate to the capacity to answer survey questions especially with
advanced disease. In general, higher educational attainment is
theorized to compensate for disease pathology, where a more
robust cognitive or motor reserve allows for the tolerance to
impairment despite more advanced disease pathology (42).
Enhanced cognitive or motor reserve leading to lower apparent
baseline impairment despite advanced disease ts the baseline
condition for short-term disease progression. Though overall, the
relationship between educational attainment polygenic scores
and progression is not as straightforward as that for PD polygenic
risk and potentially requires a closer dissection of the balance
of cognitive vs motor reserves. One would expect motor and
cognitive reserves would be least successful at compensating for
ndings revealed during the physician exam (MDS-UPDRS III), but
it appears as an important predictor for all subparts. Interesting,
while the educational attainment polygenic score is moderately
correlated with educational status (R2= 0.19), it is far from colinear
and both the polygenic score and actual education level are
included as important predictors. These predictors may potential
act as measures of biological vs biological plus environmental
cognitive reserve.

The limitations of our study include the enrichment of the
PPMI cohort with monogenic early diagnosed cases relative to
PDBP and the general population, the bias of individuals of
European ancestry in both PPMI and PDBP relative to the general
population, and the potential biased performance of polygenic
scores in individuals of European ancestry relative to the general
population. The major limitation is the heterogeneity of
treatment status across the available cohort, the mixture of ON
and OFF state MDS-UPDRS measurements used as a result,
lack of dosage information for common PD treatments, and
ultimately our inability to condently control for the inuence of
medication effects which may inuence MDS-UPDRS scores and
progression status assignment. We attempted to adjust for
medication status as best as the data would allow, though it
remains possible that our results were inuenced or confounded
by differential medication effects across PD progressors and non-
progressors. Additionally, treatment with dopamine agents may
mask PD progression, and symptomatic medications for psy-
chiatric, sleep and autonomic symptoms may affect the
progression of MDS-UPDRS I scores, but granular information
on these concomitant non-PD medications was not captured in
the PPMI or PDBP datasets2.

Despite these limitations, overall, we demonstrate that short-
term PD progression can be well predicted with a combination of
survey-based, neuroimaging, physician examination, and genetic
predictors in a meta-prediction framework. Meta-prediction can
dissect the interplay between genetic risk, motor symptoms,
non-motor symptoms, and longer-term expected rates of
progression—potentially by capturing PD subtypes and their
trajectories. Physician examination and polygenic risk scores
provide the greatest predictive value in this framework. And
nally, these predictions may enhance the efciency of clinical
trials by enriching them with individuals likely to demonstrate
disease progression over the duration of a short clinical trial. For
example, a well-powered (80%) randomized trial of an experi-
mental therapeutic with 10% relative risk reduction in a
population and a 50:50 split in progressors vs non-progressors,
as observed in PDBP, would require just over 3000 study
participants. If instead, screening of potential study participants
enriched the trial to 75:25 progressors: non-progressors—then
the required sample size would drop by nearly one-third. Thus,
these predictions may be useful in accelerating the identication
of PD disease modifying agents.
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